For both data sets, unit-cell dimensions were determined from reflections taken from three sets of 30 frames (at 0.3° steps in ω), each at 20 s exposure. Slightly more than a full hemisphere of reciprocal space was scanned by $0.3^{\circ} \omega$ steps at $\varphi=0$, 90 and 180°, with the area detector held at $2 \theta=-29^{\circ}$ and each frame exposed for 30 s . The crystal-to-detector distance was 4.94 cm . Crystal decay was monitored by repeating the initial 50 frames at the end of data collection and analysing the duplicate reflections. No decay was observed in either data set. The data sets were corrected emprically for absorption effects and refined by the full-matrix least-squares method on all F^{2} data. H atoms were constrained to idealized geometries and each was assigned an isotropic displacement parameter of 1.2 times the U_{cq} value of the attached atom. For $\left[\mathrm{Cu} L_{2}\right]-$ [ClO_{4}], one of the three independent perchlorate anions is disordered. Atoms Cl 1 and O 14 were fixed, but rotational disorder about this bond resulted in atoms $\mathrm{O} 11, \mathrm{O} 12$ and O13 being each disordered over two sites in a 60:40 ratio. Three of these disordered atom sites ($\mathrm{O} 12, \mathrm{Ol}^{\prime}$ and Ol^{\prime}) have rather extreme anisotropic displacement paramaters. For [$\left.\mathrm{Ag} L_{2}\right]\left[\mathrm{BF}_{4}\right]$, the largest residual electron-density peak of $1.29 \mathrm{e}^{-3}$ is located $1.00 \AA$ from Br 21 .

For both compounds, data collection: SMART (Siemens, 1995b); cell refinement: SAINT (Siemens, 1995b); data reduction: SAINT; program(s) used to solve structures: SHELXTL (Siemens, 1995a); program(s) used to refine structures: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We thank the University of Bristol for financial support (SMC).

[^0]
References

Bardwell, D. A., Jeffery, J. C., Otter, C. A. \& Ward, M. D. (1996). Polyhedron, 15, 191-194.
Cargill Thompson, A. M. W., Blandford, I., Redfearn, H., Jeffery, J. C. \& Ward, M. D. (1997). J. Chem. Soc. Dalton Trans. pp. 2661-2665. Desiraju, G. R. (1995). Angen: Chem. Int. Ed. Engl. 34, 2311-2327.
Federlin, P., Kern, J.-M., Rastegar, A., Dietrich-Buchecker, C., Marnot, P. A. \& Sauvage, J.-P. (1990). New J. Chem. 14, 9-12.
Geoffroy, M., Wermeille, M., Buchecker, C. O., Sauvage, J.-P. \& Bernardinelli, G. (1990). Inorg. Chim. Acta, 167, 157-164.
Goodwin, K. V., McMillin, D. R. \& Robinson, W. R. (1986). Inorg. Chem. 25, 2033-2036.
Ichinaga, A. K., Kirchhoff, J. R., McMillin, D. R., Dietrich-Buchecker, C. O., Marnot, P. A. \& Sauvage, J.-P. (1987). Inorg. Chem. 26, 4290-4292.
Müller, E., Bernardinelli, G. \& Reedijk, J. (1996). Inorg. Chem. 35, 1952-1957.
Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rac. A. D. \& Desiraju. G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 23532360.

Sheldrick. G. M. (1996). SADABS. Program for Empirical Absorption Correction. University of Göttingen, Germany.
Siemens (1995a). SHELXTL. Version 5.03. Siemens Analytical X-ray Instruments Inc.. Madison. Wisconsin, USA.
Siemens (1995b). SMART and SAINT. Area Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison. Wisconsin, USA.

Acta Cryst. (1998). C54, 1823-1825

Aquabis(2,3-butanedione dioximato- N, N^{\prime})(cyclopentyl)cobalt(III)

Ying Chen, Hul-Lan Chen, Chun-Ying Duan and Yong-Jiang Liu
Department of Chemistry, Coordination Chemistry Institute \& State Key Laboratory of Coordination Chemistry, Nanjing University; Nanjing 210093, People's Republic of China. E-mail: hlchen@nju.edu.cn

(Received 26 February 1998; accepled 2 July 1998)

Abstract

The crystal structure determination of the title compound, a model for coenzyme B_{12}, indicates that it is $\left[\mathrm{Co}\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{C}_{5} \mathrm{H}_{9}\right)\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, i.e. one 2,3butanedione dioxime ligand is neutral and the second is a dianion, with the Co^{111} ion in a distorted octahedral environment. The axial $\mathrm{Co}-\mathrm{C}$ bond length [2.029 (2) \AA] is close to that of coenzyme $\mathrm{B}_{12}[2.00$ (1) \AA].

Comment

Alkylcobaloximes $\left[R \mathrm{Co}(D \mathrm{H})_{2} L\right.$; where $D \mathrm{H}$ is the monoanion of dimethylglyoxime (2,3-butanedione dioxime), R is alkyl and L is a donor ligand] are a type of widely studied coenzyme B_{12} models having a σ-type $\mathrm{Co}-\mathrm{C}$ bond; their structures and properties have been well characterized (Bresciani-Pahor et al., 1985). However, only a few structures of alkylaquacobaloximes ($L=\mathrm{H}_{2} \mathrm{O}$) are available and in this paper, we report a new one, that of aquabis(2,3-butanedione dioximato$\left.N, N^{\prime}\right)($ cyclopentyl)cobalt(III), (I).

An ORTEP plot (Johnson, 1965) of the title compound with the atom-numbering scheme is shown in Fig. 1. The $\mathrm{Co}^{\mathrm{III}}$ ion is coordinated by four N atoms ($\mathrm{N} 1, \mathrm{~N} 2, \mathrm{~N} 3$ and N 4), a C atom (Cl^{\prime}) and an O atom (O1W), forming a distorted octahedral environment. The four N atoms are coplanar. The $\mathrm{Co}^{\mathrm{III}}$ atom is displaced slightly [0.030 (1) A] from the N_{4} mean plane towards the cyclopentyl group. The dihedral angle between the plane formed by atoms $\mathrm{Cl}-\mathrm{C} 4$, $\mathrm{N} 1, \mathrm{~N} 2, \mathrm{O} 1, \mathrm{O} 2$ and Col (mean deviation from the
best plane is $0.045 \AA$), and that formed by atoms C5$\mathrm{C} 8, \mathrm{~N} 3, \mathrm{~N} 4, \mathrm{O} 3, \mathrm{O} 4$ and Co 1 (mean deviation from the best plane is $0.019 \AA$) is $4.35(2)^{\circ}$. The two dimethylglyoxime groups are linked by intramolecular hydrogen bonds $[\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 3: \mathrm{O} 1 \cdots \mathrm{O} 32.500$ (3) \AA and $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 3166(3)^{\circ}$; $\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 4: \mathrm{O} 2 \cdots \mathrm{O} 4$ 2.493 (3) \AA and $\left.\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 4145(3)^{\circ}\right]$. Thus, both H atoms appear to be attached to the same dimethylglyoxime ligand and the complex is therefore [$\left.\mathrm{Co}\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{C}_{5} \mathrm{H}_{9}\right)\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, with one dimethylglyoxime ligand neutral and the second dianionic. This arrangement has occasionally been observed before accompanied, as here, by a small lengthening of the $\mathrm{Co}-\mathrm{N}$ and $\mathrm{N}-\mathrm{O}$ distances in the neutral ligand compared with those in the anionic ligand (Bresciani-Pahor et al., 1985).

Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity.

Other bond lengths and angles are in agreement with those in related compounds (Bresciani-Pahor et al., 1982, 1985; Savage et al., 1987; Randaccio et al., 1989).

Experimental

The title compound was synthesized according to the method of Toscano et al. (1983) and slowly crystallized as dark-red prism-shaped crystals from a methanol-water solution in air.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)-\right.$ $\left.\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=376.30$
Triclinic
$P \overline{1}$

[^1]$a=9.215(5) \AA \quad \mu=1.028 \mathrm{~mm}^{-1}$
$b=9.607(8) \AA$
$c=10.575(5) \AA$
$T=293$ (2) K
Prism
$\alpha=113.24(4)^{\circ} \quad 0.50 \times 0.35 \times 0.20 \mathrm{~mm}$
$\beta=91.76(3)^{\circ} \quad$ Red
$\gamma=90.84(5)^{\circ}$
$V=859.5(9) \AA^{3}$
$Z=2$
$D_{1}=1.454 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 4$ diffractometer
$R_{\text {int }}=0.062$
$2 \theta / \omega$ scans
Absorption correction:
empirical ψ scan (North et al., 1968)
$T_{\text {min }}=0.631, T_{\text {mix }}=0.826$
3417 measured reflections
2813 independent reflections
$\theta_{\text {max }}=25^{\circ}$
$h=-1 \rightarrow 10$
$k=-10 \rightarrow 10$
$l=-12 \rightarrow 12$
3 standard reflections every 97 reflections
intensity decay: 5.35\%

1973 reflections with

$$
I>2 \sigma(I)
$$

Refinement

Refinement on $F^{2} \quad(\Delta / \sigma)_{\text {max }}=0.001$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.068$
$w R\left(F^{2}\right)=0.157$
$S=0.954$
2809 reflections
224 parameters
H atoms riding
$\Delta \rho_{\text {max }}=0.961 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.653 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters ($\AA,{ }^{\circ}$)

Col-N4	1.868 (2)	N1-C2	1.289 (3)
$\mathrm{Col}-\mathrm{N} 3$	1.875 (2)	N2-C3	1.293 (3)
$\mathrm{Col}-\mathrm{N} 2$	1.893 (2)	N3-C6	1.305 (2)
$\mathrm{Col}-\mathrm{NI}$	1.901 (2)	N4-C7	1.306 (2)
$\mathrm{Col}-\mathrm{Cl}^{\prime}$	2.029 (2)	$\mathrm{Cl}^{\prime}-\mathrm{C5}^{\prime}$	1.488 (3)
Col-OIW	2.087 (2)	$\mathrm{C1}{ }^{\prime}-\mathrm{C}^{\prime}$	1.507 (3)
$\mathrm{Ol}-\mathrm{Nl}$	1.356 (3)	$\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}$	1.524 (3)
$\mathrm{O} 2-\mathrm{N} 2$	1.357 (3)	$\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}$	1.501 (3)
$\mathrm{O} 3-\mathrm{N} 3$	1.348 (2)	$\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime}$	1.547 (3)
$\mathrm{O4}-\mathrm{N} 4$	1.349 (2)		
N4-Col-N3	82.01 (9)	$\mathrm{Ni}-\mathrm{Col}-\mathrm{Cl}^{\prime}$	88.71 (9)
$\mathrm{N} 4-\mathrm{Col}-\mathrm{N} 2$	98.51 (9)	N4-Col-O1W	91.11 (8)
N3-Col-N2	178.11 (7)	N3-Col-OIW	91.45 (7)
N. $-\mathrm{Col}-\mathrm{Nl}$	178.11 (7)	N2-Col-OIW ${ }^{\prime}$	86.72 (8)
$\mathrm{N} 3-\mathrm{Col-N1}$	98.61 (9)	Na - $\mathrm{Col}-\mathrm{Ol} \mathrm{U}^{\prime}$	87.08 (8)
$\mathrm{N} 2-\mathrm{Col-N1}$	80.82 (9)	$\mathrm{Cl}^{\prime}-\mathrm{Col}-\mathrm{OlW}$	175.51 (8)
$\mathrm{N}+$ - $\mathrm{Col}-\mathrm{Cl}^{\prime}$	93.11 (9)	$\mathrm{C5}^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{Col}$	117.7 (2)
$\mathrm{N} 3-\mathrm{Col-Cl}{ }^{\prime}$	87.65 (9)	$\mathrm{C}^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{Col}$	119.61 (12
N2-Col-C1'	94.14 (9)		

The H atoms of the water molecules and those attached to the glyoxime O atoms were found from the difference Fourier map and refined isotropically. Although inspection of coordinates shows that individual molecules have an approximate mirror plane at $\frac{1}{4}$, this does not persist in the molecular packing and we believe the structure is triclinic, not monoclinic. Refinement as monoclinic was not satisfactory.

Data collection: XSCANS (Siemens, 1994). Cell refinement: XSCANS. Data reduction: SHELXTL (Siemens, 1995). Program(s) used to solve structure: SHELXTL. Program(s) used to refine structure: SHELXTL. Molecular graphics: SHELXTL. Software used to prepare material for publication: SHELXTL.

This research was supported by the National Nature Science Foundation of China.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: HA1217). Services for accessing these data are described at the back of the journal.

References

Bresciani-Pahor, N.. Forcolin, M., Marzilli, L. G., Randaccio, L., Summers, M. F. \& Toscano. P. J. (1985). Coord. Chem. Rev. 63, 1-125.
Bresciani-Pahor, N., Randaccio, L., Toscano, P. J. \& Marzilli, L. G. (1982). J. Chem. Soc. Datton Trans. pp. 567-572.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessec, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24. 351-359.
Randaccio, L., Bresciani-Pahor, N., Zangrando, E. \& Marzilli, L. G. (1989). Chem. Soc. Rer: 18. 225-250.

Savage. H. F. J., Lindley, P. F., Finney, J. L. \& Timmins, P. A. (1987). Acta Cryst. B43. 280-295.
Siemens (1994). XSCANS. X-ray Single Crystal Analysis Syistem. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1995). SHELXTL Reference Manual. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin. USA.
Toscano, P. J., Swider, T. F.. Marzilli, L. G., Bresciani-Pahor, N. \& Randaccio, L. (1983). Inorg. Chem. pp. 3416-3421.

Acta Cryst. (1998). C54, 1825-1827

exo- and endo-Tricarbonyl[(4b,5,6,7,8,8aη)-cis- N -methyl-2,3,4,4a,9,9a-hexahydro1 H -carbazole]chromium(0)

F. Christopher Pigge, Nigam P. Rath and Shiyue Fang
Department of Chemistry, University of Missouri-St Louis, 8001 Natural Bridge Road, St Louis, MO 63121, USA. E-mail: nigam_rath@umsl.edu

(Received 15 April 1998; accepted 14 July 1998)

Abstract

Acid-mediated hydride reduction of tricarbonyl $\left(\eta^{6}-N\right.$ -methyl-1,2,3,4-tetrahydrocarbazole)chromium(0) affords either the cis-fused exo-hexahydrocarbazole-chromium (0) complex $\left\{\left[\mathrm{Cr}\left(\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}\right)(\mathrm{CO})_{3}\right]\right.$, (I) $\}$ exclusively, or a separable mixture of (I) and the endoisomer $\left\{\left[\mathrm{Cr}\left(\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}\right)(\mathrm{CO})_{3}\right]\right.$, (II) $\}$, depending upon the choice of hydride donor. The conformations of the hexahydrocarbazole systems differ in the orientation of the indoline moiety with respect to the saturated hexahydrocarbazole rings. The isolation of the exo-isomer is un-

usual, as this complex arises via reaction at the sterically more hindered endo face of the coordinated ligand.

Comment

The chemistry of (η^{6}-arene)tricarbonylchromium complexes continues to attract much attention, owing to the multitude of reactions in which the bound arene can participate (Semmelhack, 1995). Moreover, most transformations of chromium-complexed arenes proceed with excellent levels of stereoselectivity, as a consequence of the stereodirecting effect of the $\mathrm{Cr}(\mathrm{CO})_{3}$ fragment (Davies \& McCarthy, 1995). In a study aimed at extending this useful reactivity profile to include stereocontrolled manipulations of η^{6}-coordinated indoles, the acid-mediated hydride reduction of (indole) $\mathrm{Cr}(\mathrm{CO})_{3}$ complexes has been explored (Pigge et al., 1998). It is in connection with this project that the title complexes, (I) and (II), were prepared and structurally characterized.

(I)

(II)

The molecular structures of (I) and (II) are shown in Figs. 1 and 2, respectively. The exclusive production of the exo-isomer, (I), under the initial set of reaction conditions is significant, as this complex results from reaction at the nominally sterically more hindered endo face of the coordinated indole ligand. Such endoselective reactions of (arene)chromium complexes have rarely been observed (Sur et al., 1996). It is also noteworthy that (I) and (II) represent two of only a few structurally characterized (η^{6}-indoline)-transition metal complexes (Chen et al., 1997; Heaton et al., 1993; Dickens et al., 1989).

Bond distances and angles for the two complexes are quite similar, with the major structural difference being the stereochemistry of the carbazole ring fusion relative to the $\mathrm{Cr}(\mathrm{CO})_{3}$ group. The average $\mathrm{Cr}-\mathrm{CO}$ distances are $1.834(2)$ and 1.832 (4) \AA, and the average $\mathrm{OC}-\mathrm{Cr}-\mathrm{CO}$ angles are 88.16 (9) and $88.04(8)^{\circ}$, for compounds (I) and (II), respectively. The $\mathrm{Cr}(\mathrm{CO})_{3}$ fragment adopts a partially eclipsed conformation with the coordinated arene, and the three CO ligands are aligned over C5, C7, and C8a. Such a conformation is typical in $\mathrm{Cr}(\mathrm{CO})_{3}$ complexes of arenes bearing an electronreleasing substituent (Solladie-Cavallo, 1985). The Cr $\mathrm{C}_{\text {arenc }}$ distances vary in the ranges 2.202 (2)-2.346(2) and 2.200 (2)-2.390 (2) \AA in (I) and (II), respectively. The distance from the Cr atom to the centroid of the aromatic ring is 1.757 in (I) and $1.773 \AA$ in (II). The bond distances and angles within the aromatic ring itself are typical for both complexes [mean values are 1.410 (3)

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1374). Services for accessing these data are described at the back of the journal.

[^1]: Mo $K \alpha$ radiation
 $\lambda=0.71073 \AA$
 Cell parameters from 28 reflections
 $\theta=4.82-12.52^{\circ}$

